by Fairwaves

The first ever truly embedded SDR

$385,217 raised

of $90,000 goal

428% Funded! Order Below

Product Choices



Get an XTRX Pro board. Does not include any cables, antennas, or adapter boards.


XTRX Pro Deluxe Bundle

Get an XTRX Pro board as well as an Antennas + Cables set, a PCIe x2 + Front End Adapter, and a USB 3 Adapter with Aluminum Enclosure (see below for details). Also comes with four extra U.FL-to-U.FL cables and four extra U.FL-to-SMA-male cables.


Antennas + Cables

A full complement of cables and antennas for your XTRX, including four RF antennas (95 mm, 2 dBi, SMA male, GSM/3G/LTE 880 - 960 MHz, 1710 - 1990 MHz), one GPS antenna, and five cables.


PCIe x2 + Front End Adapter

This PCIe card securely holds an XTRX board (not included) so it can be used in a standard PCIe x4 slot. It includes an RF front end with a LNA and PA for up to 100 mW output on each channel. A TDD switch is incorporated for applications like TDD LTE. You can bypass the front end by attaching cables directly to XTRX. This adapter achieves the full 10 Gbit/s raw bus bandwidth and can be plugged into x4/x8/x16 PCIe slots. A six-pin JTAG connector makes it easy to program and debug the FPGA. A micro SIM card slot is also present.


XTRX Pro PCIe Octopack

This single PCIe card comes loaded with eight (8!) removable XTRX Pro boards, metal installation brackets, enough cables for all GPS and MIMO Tx/Rx ports, and a special board for synchronizing all eight XTRX Pro boards.


Recent Updates

As Featured In


"XTRX – A high-performance SDR in a mini PCIe form factor"


"It ... has a tuning range of 10 MHz - 3.7 GHz, with a sample rate of up to 120 MSPS. It is also has some interesting additional features such as a built in GPSDO and an onboard FPGA which can be used to accelerate DSP tasks as well."


"Con un formato compacto y alto rendimiento, este módulo SDR embebible XTRX es útil para sistemas embebidos y drones a nivel profesional."


"The Fairwaves “XTRX” mini-PCIe SDR card is a low-cost embeddable SDR card aimed at high data rate apps including 4G/5G and “massive” MIMO."


"The Fairwaves XTRX, now raising on Crowd Supply, is... something rather different."


"The XTRX’s main features are the integrated GPSDO (GPS Disciplined Oscillator), the compact size (just 30x51mm) and the 120MHz max RF bandwidth (!)."


"Fairwave’s XTRX, a 'truly' embedded SDR (software-defined radio) module now up as a Crowd Supply crowdfunding project, manages to pack an entire 2x2 MIMO SDR with an RF tuning range of 30MHz to 3.8GHz into a diminutive Mini PCIe format."

Open Electronics

"A low-cost embeddable SDR card aimed at high data rate apps including 4G/5G and 'massive' MIMO."

CNXSoft - Embedded Systems News

"Fairwaves is a startup that aims to make deploying and operating mobile networks in rural regions profitable, and their latest project is called XTRX, a high performance Software Defined Radio (SDR) board packed into a mini PCIe card form factor."

XTRX is the smallest easily embeddable software-defined radio (SDR). It is both affordable and high-performance. XTRX is designed to enable the next generation of wireless solutions, from prototype to production.

LTE modems and GPS receivers are commodity parts easily bought in any electronic components store and added to your project. On the other hand, everyone designing an SDR-based product had to spend precious time and money on a custom design – until XTRX.

Don’t waste your time designing yet another SDR. Embedding XTRX into your product is easy, freeing you up to focus on what your customers really need.


XTRX is the best platform available today for building SDR-based products. We designed it with demanding embedded applications in mind:

  • Best-in-class Performance: 2 x 2 MIMO, 120 MSPS SISO / 90 MSPS MIMO, and more
  • Compact Form Factor: as a Mini PCIe card, it’s the smallest commercially available SDR
  • Thermal Coupling: well-designed thermal interface to a heatsink
  • Stable Clock: accurate enough for cellular standards
  • GPSDO: on-board GPS disciplined oscillator
  • Synchronized Clocks: share the same clock source across many boards
  • SIM Card Reader: appears as a typical USB serial SIM card reader
  • High-speed GPIO: 12 total, of which eight can form four matched LVDS lines

If You’ve Ever Cursed Your SDR…

XTRX isn’t for everyone. We expect most people interested in XTRX to already have some experience with SDRs. If you’ve never used an SDR before, XTRX might be a bit overwhelming for you. XTRX might be right for you if you have:

  • deployed SDR-based solutions in the field
  • wanted to develop a massive MIMO system only to realize you don’t have $1 million
  • cursed your SDR (or USB) for its latency, reliability, or cables
  • yearned to level-up your SDR skills with cutting-edge equipment

If this describes you, or you are looking for a better SDR, fear not and read on!

XTRX revision 3 (top)

Use Cases

Here are just a few of the things you could use XTRX for:

Massive MIMO System

XTRX boards can share the same sampling and reference clocks, which makes it easy to build a massive multiple input, multiple output (MIMO) system.

Monitor Massive Amounts of Bandwidth

With synchronized clocks, multiple XTRX boards can collectively monitor very large chunks of the RF spectrum. For example, eight synchronized XTRX boards could monitor nearly 1 GHz of bandwidth.

LTE Cellular

The combination of XTRX’s accurate, stable clock, on-board GPSDO, and low-latency PCIe bus makes LTE possible out of the box.

Software-defined 2G/3G/4G Modem

When inserted into a Mini PCIe slot reserved for cellular modems, XTRX appears as a USB SIM card reader.

Drones and Embedded Systems

Power consumption, weight, size, and performance all matter when it comes to drones and embedded systems. XTRX’s Mini PCIe form factor and GPIO enable you to interface with a wide variety of single board computers, sensors, and actuators.

DSP Acceleration

You can use the FPGA to accelerate your real-time signal processing; the high-speed, low-latency PCIe bus allows shuttling data back and forth between the host CPU and XTRX’s FPGA.

XTRX revision 3 (bottom)

Features & Specifications

  • RF Chipset: Lime Microsystems LMS7002M FPRF
  • FPGA Chipset: Xilinx Artix 7 35T/50T (CS/Pro)
  • Channels: 2 × 2 MIMO
  • RF Output Power: 0 to 10dBm depending on frequency
  • Sample Rate: ~0.2 MSPS to 120 MSPS SISO / 90 MSPS MIMO
  • Tuning Range: 30 MHz - 3.8 GHz
  • Rx/Tx Range:
    • 10 MHz - 3.7 GHz
    • 100 kHz - 3.8 GHz with signal level degradation
  • PCIe Bandwidth:
    • PCIe x2 Gen 2.0: 8 Gbit/s
    • PCIe x1 Gen 2.0: 4 Gbit/s
    • PCIe x1 Gen 1.0: 2 Gbit/s
  • Reference Clock:
    • Frequency: 26 MHz
    • Stability w/o GPS: 100 ppb or 500 ppb over the temperature range (depends on the XTRX version)
    • Stability w/GPS: <10 ppb stability after GPS/GNSS lock
  • Form Factor: full-size Mini PCIe (30 × 51 mm)
  • Bus Latency: <10 µs, stable over time
  • Synchronization: synchronize multiple XTRX boards for massive MIMO
  • GPIO:
    • FPC Edge Connector: four lines (usable as two diff-pairs)
    • Mini PCIe Reserved Pins: eight lines (including two diff-pairs, 1pps input, 1pps output, TDD switch control, and three LEDs)
  • Accessories:
    • Antennas + Cables
    • USB 3 Adapter with Aluminium Enclosure
    • PCIe x2 + Front End Adapter
    • PCIe Octopack

Block Diagram

Documentation & Sources

We’re publishig all XTRX-related code under the xtrx-sdr GitHub organization. The most important repositories to note:


Tuning range 30 MHz - 3.7 GHz 30 MHz - 3.7 GHz 70 MHz - 6 GHz 300 MHz - 3.8 GHz 30 MHz - 3.8 GHz 10 MHz - 3.5 GHz 22 MHz - 2.2 GHz
Duplex Full MIMO Full MIMO Full MIMO Full SISO Full MIMO Full SISO RX only
Max sampling rate 120 MSPS SISO / 90 MSPS MIMO 120 MSPS SISO / 90 MSPS MIMO 61.44 MSPS 40 MSPS 61.44 MSPS 30.72 MSPS 3.2 MSPS
ADC/DAC resolution 12-bit 12-bit 12-bit 12-bit 12-bit 12-bit 8-bit
Max RF bandwidth 120 MHz 120 MHz 56 MHz 28 MHz 61.44 MHz 30.72 MHz 3.2 Mhz
Channels 2 2 1 (2 for B210) 1 2 1 1
Transmit power 0 to 10dBm (depending on frequency) 0 to 10dBm (depending on frequency) 10dBm+ 6dBm 0 to 10dBm (depending on frequency) 0 to 10dBm (depending on frequency) none
RF chipset LMS7002M LMS7002M AD9364 or AD9361 LMS6002M LMS7002M LMS7002M RTL2832U
FPGA Xilinx Artix7 35T Xilinx Artix7 50T Xilinx Spartan 6 XC6SLX75 Altera 40KLE/115KLE Cyclone 4 Altera 40KLE Cyclone 4 Altera MAX 10 none
Embedded yes yes no no no no no
Industrial temperature range no yes no Optional no no no
Temperature sensors yes yes no no yes no no
Frequency stability ±0.5 ppm w/o GPS lock, <±0.01 ppm w/ GPS lock ±0.1 ppm w/o GPS lock, <±0.01 ppm w/ GPS lock ±2 ppm ±1 ppm ±2.5 ppm ±2.5 ppm ±25 ppm
GPS synchronization on board on board Addon (+$636) no no no no
Bus/interface PCIe x2, USB 3 adapter, and more (FPGA based) PCIe x2, USB 3 adapter, and more (FPGA based) USB 3 USB 3 USB 3 USB 3 USB 2
Raw bus bandwidth 10 Gbit/s 10 Gbit/s 5 Gbit/s 5 Gbit/s 5 Gbit/s 5 Gbit/s 480 Mbit/s
Dimensions 30 × 51 mm 30 × 51 mm 97 x 155 mm 87 x 131 mm 100 x 60 mm 69 x 31.4 mm 40 x 60 mm
Extra features GPIO, GPS, SIM card interface GPIO, GPS, SIM card interface GPIO GPIO GPIO GPIO none
Multiple boards synchronization Sample clock and timestamps Sample clock and timestamps Sample clock and timestamps Sample clock and timestamps Sample clock Sample clock no
Price $260 $490 $686 - $1,119 + $636 (for GPSDO) $415 $299 $139 $10+
Price per channel $130 $245 $560 - $715 + $636 (for GPSDO) $415 $150 $139 $10+

Conceptual plot of XTRX's market position

Why Mini PCIe?

We chose the Mini PCIe form factor for XTRX because it’s the best option for a high-speed, low-latency bus that is both physically compact and widely used. In other words, using Mini PCIe results in a device that is both high-performance and easily embeddable.

While it’s true that many laptops are moving away from Mini PCIe slots and toward M.2 slots, Mini PCIe is still the most popular PCIe form factor among standards-based, professional single-board computers (SBCs) and embedded systems. We will likely release an M.2 version of XTRX after the Mini PCIe version has been delivered.

We also considered USB 3 and Thunderbolt 3, but the former is high-latency and the latter is not yet very popular. However, should you want to use USB 3 or Thunderbolt 3, there are adapter boards for both.

Adapter Boards & Accessories

While Mini PCIe is a great form factor, you might need something else. That’s why we developed the USB 3 Adapter with Aluminum Enclosure and the PCIe x2 + Front End Adapter. We’re also offering Antennas + Cables known to work with XTRX. All of these are available separately, or together in the XTRX Deluxe Bundle. In addition, we’re offering a special XTRX PCIe Octopack loaded with eight removable XTRX boards.

USB 3 Adapter with Aluminum Enclosure

This adapter converts your XTRX from Mini PCIe to USB 3 and comes with an aluminum enclosure designed specifically for XTRX. We’re working hard to maximize the heat dissipation through the metal case so you won’t need a fan even under long, heavy loads. The adapter has three status LEDs, a micro USB 3 port, one SMA connector for the GPS antenna, four SMA connectors for the MIMO Tx/Rx antenna pairs, a micro SIM card slot, and a slot for a GPIO FPC cable. The adapter comes with a USB cable and all RF cables needed to connect an XTRX to the SMA connectors within the aluminum enclosure. The adapter does not include an XTRX, antennas, or FPC cable.

XTRX USB 3 Enclosure (front)

XTRX USB 3 Enclosure (back)

Initially, we wanted to implement USB 3 using the gigabit transceivers on the Artix 7 FPGA. This would have made the adapter really simple, but it turned out the transceivers are not capable of USB 3 out-of band (OOB) signaling. In the end, we settled on using the Broadcom USB3380 chip. You won’t get the same level of performance through USB 3 as you get in native PCIe mode, but we’ve tested running an LTE eNodeB (among other applications) through the adapter and it works well. We may realize further performance gains by taking advantage of the USB3380 chip’s internal 8051 microcontroller, which we haven’t yet utilized.

XTRX USB 3 Adapter block diagram

This USB 3 adapter is great for rapid application development – you can use your XTRX wherever you don’t have access to Mini PCIe, such as your laptop, you can plug and unplug on the go, reflash the FPGA image without rebooting, etc. Also, the USB3380 has four GPIO pins that we’re using for JTAG emulation, so you’ll always be able to unbrick your XTRX if your FPGA experiments go awry.

PCIe x2 + Front End Adapter

This PCIe card securely holds an XTRX board (not included) so it can be used in a standard PCIe x4 slot. It includes an RF front end with a low-noise amplifier (LNA) and power amplifier (PA) for up to 100 mW output on each channel. A time duplex division (TDD) switch is incorporated for applications like TDD LTE. You can bypass the front end by attaching cables directly to XTRX. This adapter achieves the full 10 Gbit/s raw bus bandwidth and can be plugged into x4/x8/x16 PCIe slots, though it won’t fit into an x1 slot unless the slot has an open end. A six-pin JTAG connector on the edge is compatible with a JTAG-HS2 cable, so you can easily program and debug the FPGA. The board also has a micro SIM card slot.

XTRX PCIe x2 + Front End Adapter

XTRX PCIe x2 + Front End Adapter block diagram

XTRX PCIe Octopack

If you need a massive MIMO deployment or have a large swath of spectrum you need to monitor, you’ll want one of these limited availability Octopacks. This single PCIe card comes loaded with eight removable XTRX boards, metal installation brackets, cables for all of the GPS and MIMO Tx/Rx ports, and a special board for synchronizing all eight XTRX boards.

XTRX PCIe Octopack (bottom)

XTRX PCIe Octopack (top)

The Octopack is based on a switch that routes between a single x4 PCIe 2.0 card and eight x1 PCIe 2.0 cards. This means you can’t simultaneously utilize the full bandwidth of all eight XTRX boards, but it’s still capable of running LTE-A and other applications. All eight XTRX boards on an Octopack can be synchronized using the included sync board, which has a more stable clock generator and connects via the included FPC cable to the first XTRX. Using external clock synchronization ports (CLK_IN/PPS_IN), it’s possible to synchronize multiple Octopacks, thus creating 32 x 32, 64 x 64, or even larger MIMO systems.

XTRX Octopack block diagram

Flexible Development


The XTRX hardware itself is proprietary, though the hardware accessories we designed for it (e.g., the USB 3 and PCIe adapters) are open hardware.


XTRX’s main FPGA code is open source and without a viral license, so not only can you modify the code, but you can also develop your own proprietary FPGA blocks. The FPGA is approximately 30% utilized. We will share a detailed utilization report in a future update. You can upload your own firmware with our USB 3 adapter board or with a JTAG cable and our PCIe adapter board. If you are good at soldering, you can even solder JTAG directly to the XTRX board – that’s how we programmed our first samples.

Host Software & Drivers

The host-side software and drivers are open source.

We developed our low-level API to maximize performance (i.e., we’re using a zero-copy interface). We provide a SoapySDR interface to our low-level library, so you can quickly start developing if you’re already familiar with SoapySDR. For example, using SoapySDR plugins, you can easily get UHD support. Of course, there’s always the option to interface directly to the low-level API if you don’t want to use SoapySDR or need to eek out the most bandwidth and lowest latency.

The USB 3 adapter relies on a libusb wrapper, so it will work on almost every platform libusb works on. In contrast, PCIe communication requires a kernel-level driver for direct memory access (DMA) and interrupt handling. Our host library talks to a device provided by the kernel driver. Currently, we have an implementation for Linux only. A Windows driver is in early stages of development and will be released later. We don’t plan to develop PCIe drivers for other platforms right away. Our Linux kernel driver exposes TTY devices for GPS, UART, and SIM card UART, so you can use existing software, like gpsd and xgps. The adapter also provides a kernel pulse per second (LinuxPPS) interface for handling the lowest levels of jitter in NTP-like applications.

By Professionals, For Professionals

Developing a cutting-edge product requires more than just snapping together a few ready-to-use pieces. Over the last year and a half, we’ve been through three major revisions and many minor revisions of XTRX to find the optimal ratio of price, performance, and power consumption. In order to deliver the best product possible at an incredible price, we took deep dives into many thorny issues. For example, we wrote our own PCIe DMA implementation so as to maximize bus throughput while staying within the constraints of the smallest Artix 7 FPGA.

We did this work so you wouldn’t have to. With XTRX, you can incorporate an SDR into your own designs without first becoming an expert in the rarefied art of SDR design.

A Brief History of Fairwaves and XTRX

At Fairwaves, we’re familiar with the problem of not being able to buy an off-the-shelf SDR. Way back in 2008, we had an idea to build an SDR-based GSM base station that could be deployed in real networks. We got a USRP1 and tried to run OpenBTS, only to struggle for days before realizing cellular standards require 0.05 to 0.1 ppm clock accuracy but the USRP1 has only 20 ppm clock accuracy. We needed a better clock, so we created ClockTamer, an open source, highly accurate, programmable clock source.

Soon after, we found the USB connection used by USRP1 was neither reliable nor easily embedded in a compact system. So, we created UmTRX, an industrial-grade SDR that became the basis of our UmSITE product, a rugged, network-in-a-box GSM base station that has been deployed around the world and has withstood everything from Saharan summers to Siberian winters.

In 2016, we started looking into 4G (a.k.a. LTE) and 5G wireless systems and realized we needed something better. Today, we’re launching XTRX to eliminate size, performance, and cost barriers to making the next generation of wireless solutions.

Manufacturing Plan

We are using the same manufacturing and supply chain partners for XTRX that we’ve been using for other projects over the past several years. We will release the revision 4 manufacturing files to our partners at the end of this campaign. Components procurement and PCB fabrication will take place through March 2018, followed by PCB assembly in April, testing and packaging in May, and shipping at the end of May and into June.

Risks & Challenges

We will be shipping revision 4 of XTRX to backers of this campaign. The version will have only minor changes to the current revision 3, which has undergone extensive development and testing. We believe there is a very low risk that the design itself is faulty.

The biggest risk is in the supply chain, such as delays introduced by parts shortages. Though such issues can’t always be avoided, we’ve been manufacturing SDRs since 2013 and we know how to reduce the likelihood of issues and to mitigate their effects. Regardless, we commit to communicating openly and honestly about manufacturing progress. Be sure to subscribe to the project updates to get the latest news.



We are a vertically integrated vendor of cellular equipment focused on the needs of emerging markets. We are developing, manufacturing, deploying, and operating turn-key cellular network solutions including radio equipment, towers, power and backhaul all the way to a core network and SS7 interconnect. Our team has been building software-defined radios and systems based on them since 2009 and is well known for its ClockTamer, UmTRX, and UmSITE products.

Alexander Chemeris


Sergey Kostanbaev

Software & Firmware Development

Andrey Sviyazov

Hardware Design

Albert Gardiner


Andrey Bakhmat


Andy Avtushenko


Subscribe to the Crowd Supply newsletter, highlighting the latest creators and projects: